题目:200.岛屿数量
给你一个由 '1'
(陆地)和 '0'
(水)组成的的二维网格,请你计算网格中岛屿的数量。
岛屿总是被水包围,并且每座岛屿只能由水平方向和/或竖直方向上相邻的陆地连接形成。
此外,你可以假设该网格的四条边均被水包围。
- 示例 1:
输入:grid = [
["1","1","1","1","0"],
["1","1","0","1","0"],
["1","1","0","0","0"],
["0","0","0","0","0"]
]
输出:1
- 示例 2:
输入:grid = [
["1","1","0","0","0"],
["1","1","0","0","0"],
["0","0","1","0","0"],
["0","0","0","1","1"]
]
输出:3
- 提示:
m == grid.length
n == grid[i].length
1 <= m, n <= 300
grid[i][j] 的值为 '0' 或 '1'
思路
找到所有的’1’:
- 遍历整个网格,找到所有的
'1'
。 - 对每个
'1'
,调用dfs
函数,将该岛屿淹没并计数。
- 遍历整个网格,找到所有的
深度优先搜索 (DFS):
- 将当前的
'1'
变为'0'
,表示已访问过。 - 递归地检查相邻的四个方向(上、下、左、右)是否也是
'1'
,并继续沉没它们。
- 将当前的
- 时间复杂度:O(mn)
- 空间复杂度:O(mn)
代码
public int numIslands(char[][] grid) {
int numIslands = 0;
for (int i = 0; i < grid.length; i++) {
for (int j = 0; j < grid[0].length; j++) {
if (grid[i][j] == '1') {
// 岛屿数量加1
numIslands++;
// 使用DFS沉没这片岛屿
dfs(grid, i, j);
}
}
}
return numIslands;
}
private void dfs(char[][] grid, int x, int y) {
// 边界条件,判断当前坐标是否合法
if (x < 0 || x > grid.length - 1 || y < 0 || y > grid[0].length - 1 || grid[x][y] == '0') {
return;
}
// 将当前陆地标记为水,表示已经访问过
grid[x][y] = '0';
// 递归检查相邻的四个方向
dfs(grid, x - 1, y);
dfs(grid, x + 1, y);
dfs(grid, x, y - 1);
dfs(grid, x, y + 1);
}